Engineering Design and Development -- Core

The primary intent of the course is to provide the student with the skills necessary to understand and interpret engineering drawings and working sketches. Also the student will learn to construct 3D models and engineering drawings using computer-aided design, CAD. In addition to working on developing spatial reasoning and technical drawing skills, students will develop technical writing skills and certain soft skills through journal article reflections, work ethic lessons, and oral presentations on various topics throughout the semester. The course will culminate with a 6-8 week long final project where students will work on teams to identify a problem, design a unique solution, create a prototype, then test the solution.

Objectives

- Understanding the engineering design process
 - Using graphics to accurately communicate information and design
 - Sectioning and dimensioning multi-view drawings
- Visualizing in three dimensions
- Designing solid models.
- Creating and interpreting engineering drawings

Assessment Students will be assessed using homework assignments, quizzes, and exam as well as a final project.

Course Essentials

Equipment	Cost/Unit
3D Printers (Makerbot Replicator)	<u>Reusable:</u> \$5,000 each, <u>Consumable:</u> filament (\$500 per year)
Solidworks 3D Modeling Software	\$3,500 (60 seats), \$1000 per year update
Computers to Run Software (Lenovo i7, NVDIA Graphics card)	\$1,500 each (1 per student, 15 sets), \$0 if computer lab already established

First Semester Course Outline

Unit 1: Introduction to Design	Engineering design process, Safety, Sketching
Unit 2: Multi-views and Visualization	Introduction to multi-views, Isometric view, Visualization in 2D and 3D
Unit 3: Section Views	Defining section views, Understanding the importance of section views
Unit 4: Dimensioning	Rules of dimensioning, Dimensioning non-standard views and holes
Unit 5: Technical Communication	Project design and engineering notebooks, Writing a good problem
	statement, Gantt charts, Scholarly journal article review, Professionalism
	and ethics, Work ethic, Grant writing, Patents
Unit 6: Fundamentals of 3D printing	Additive vs subtractive manufacturing, applications for 3D printing

Second Semester Course Outline

Unit 7: SolidWorks - Basics	The basics of 3D modeling, sketches versus features
Unit 8: SolidWorks – Editing and	Parametric modeling dimensions, Mirroring sketches and features
Mirroring	
Unit 9: SolidWorks – Advanced Modeling	Linear and Circular Patterns, Revolved features and Shells, Lofts and
	Sweeps
Unit 10: SolidWorks – Engineering	Title Blocks, multi-views, sectional views, dimensioning
Drawings	
Unit 11: SolidWorks - Assemblies	Mating parts, inserting BOM, inserting balloons and part names
Unit 12: Final Project	Define, Research, Design, and Prototype Solution, 3D print and test
	solution, Present final solution